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SUMMARY 

This paper deals with the determination of stresses in an infinite medium containing an external crack 
surrounding a cylindrical inclusion. The two media are assumed to be homogeneous, isotropic and elastic but 
with different elastic constants. The continuity of stresses and displacements is assumed at the common 
cylindrical surface due to perfect bonding. The problem is reduced to the solution of a Fredholm integral 
equation of the second kind. A closed-form expression is obtained for the stress-intensity factor. The integral 
equation is solved numerically and the results are used to obtain the numerical values of the stress-intensity 
factor which are displayed graphically. 

I. Introduction 

In recent years considerable effort has been devoted to the problem of  calculating stresses in 

infinite and semi-infinite solids, thick plates and infinitely long cylinders containing penny- 

shaped or external cracks. Adequate references to this type of  work may be found in Sneddon 

and Lowengrub [1] and Kassir and Sih [2]. Recently Srivastav and Lee [3] solved axisymmetric 

crack problems for media with a cylindrical cavity. 

In this paper we discuss the problem of determination of  stresses in an infinite medium 

containing an external crack surrounding a circular cylindrical inclusion. The crack is assumed 

to be in a plane (z -- 0) normal to the axis of  the cylinder (z-axis). The cylinder is assumed to be 

in perfect bond with the infinite medium surrounding it. The elastic constants of  the two media 

are assumed to be different. The crack surfaces are subjected to a normal loading. By assuming 

suitable solutions o f  the equilibrium equations for the two regions, the problem is reduced to 

the solution of  dual integral equations. The dual integral equations are further reduced to a 

single Fredholm integral equation o f  the second kind which is amenable to numerical solution. 

Solving the Fredholm integral equation numerically, the numerical values of  the stress-intensity 

factor are obtained and then displayed graphically. 

* The authors thank the National Research Council of Canada for supporting this research through NRC 
Grant No. A-4177. 
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2. F u n d a m e n t a l  e q u a t i o n s  

We denote the region containing the infinite space b < r < 0% _oo < z < oo by L t and the region 
containing the cylindrical inclusion 0 < r < b, -oo < z < oo'by L2. For a symmetrical 
deformation the displacement vector is denoted by [Uir(r, z), O, uiz(r, z)] and the stress tensor is 
denoted by [Oirr, Oioo, 4z ,  °~z] and Vi and v i denote the shear modulus and Poisson ratio 
respectively of the region L i (i = 1,2). From Sneddon ([4], p. 505), we find that a solution of 
the equations of elastic equilibrium in the axially symmetric case is given by 

1 D2V Uz(r,z)= 1 ~ ~2V~ 
ur(r'z) = 2p ar~z ' ~p (1-v)V 2 V -  az 2_ j '  (1) 

where V(r, z) is an axisymmetric biharmonic function. The stress components can easily be 
determined from the stress-strain relations. We have 

arr(r'z)=-~z V 2 V -  ar2_J ' °rz -~r 1 - v ) V 2 V -  Oz2_] ' (2) 

°ee ( r ' z )=~z~  VzV  1 DVI D f ~2V~ r ,o Ar, z)=-gz 2-OV V 

where p and v are shear modulus and Poisson ratio respectively. 
A suitable biharmonic function for the region L t can be taken as 

£ V1 (r, z) = -21at s -3F(s)[2vl + sz]e-SZJo(sr)ds 

- 2 g l f :  s -2 [{A (s)-4(1 -Vl )B(s)}Ko(sr) -srB(s)Kl (sr)] sin (sz) ds 

(3) 

where F(s), A(s) and B(s) are unknown functions to be determined and Jp( ) and Kp( ) 
denote the Bessel function of the first kind and the modified Bessel function of the second kind 
respectively and of order p i> 0. The components of the displacement vector and of the stress 
tensor for the region L t can be obtained with the help of equations (1), (2) and (3) as follows: 

1 
Url (r,z) = [̂ ,o s (sz + 2vl - 1)F(s)Jl(rs)e-SZds 

/ : { - K 1  (rs)A (s) + [4(1 -v t  )K1 (rs) + rsKo(rs)]B(s)} cos (sz )ds, 

(r,z) = f :  1 ( 2 - 2 v l  +sz)F(s)Jo(rs)e-SZds 1 

uz s 

/ :  [-Ko(rs)A (s) + rsKl (rs)B(s)] sin (sz)ds, 
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2ta, °r---fr =.~o. -1  +sz )Jo(rs )+(m-2v , - s z )  ~s -J 

,£ F(s)e-SZ ds + - {[K,(rs) + rsKo(rs)]A(s) 
r 

- [(4 - 4vl + r2s 2 )K1 (rs) + (3 - 2vl )rsKo(rs)]B(s)} cos (sz)ds, 

1 

2Ul - - a o  (1 +sz )F( s ) Jo ( r s ) e -SZdS- fo  s{A(s)Ko(rs) 

+ [2vlKo(rS) - rsK1 (rs)]B(s)} cos (sz)ds, 

1 
Orz 

21al 
- - Z f o  sF(s)J'(rs)e-SZds +fo s{Ka(rs)A(s) 

-- [2(1 -v l  )K1 (rs) + rsKo(rs)]B(s)}sin(sz)ds. (4) 

Making use of  the following biharmonic function (see [ 1 ], p. 195) for the region L2 

I"2 (r, z) = - 2/a2f ° s -2 {[C(s) + 4(I  - - P  1 )D(s)llo(sr)-srD(s)I1 (sr)} sin(sz)ds, (5) 

we find the following expressions for the displacement and stress components for the regionL2 : 

u2r (r, z) = {I, (rs)C(s) + [4(1 -v2  )I1 (rs)-rslo(rs)]D(s)} cos (sz)ds, 

U2z(r, z) = [rsI1 (rs)D(s) -lo(rs)C(s)] sin (sz)as, 

2 
Orr 

2/a2 
- 1 / o  {[I,(rs)-rslo(rs)lC(s) + [ ( 4 - 4 v  2 + r2s2)Ii (rs) 

- (3 - 2v2 )rslo (rs)]D (s)} cos (sz) ds, 

2 oo Ozz 
fo s{Io(rs)C(s) [2v2Io(rs) + rsll (rs)]O(s)}cos(sz)ds, 

2t~2 

2 
Orz 

2/~2 
- - f o  s{I1 (rs)C(s) + I2(1 -v2)11 (rs)-rslo(rs)]D(s)} sin (sz)ds, (6) 

where Ip ( ) denotes the modified Bessel function of  the first kind and of  order p />  O. 
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3. Formulation of  the problem 

With reference to the cylindrical coordinate system chosen, the coaxial crack occupies the 
region z = 0 -+, r >~ a and the cylindrical inclusion is described by r = b (b < a), _oo < z < oo. The 

loading applied to the crack surface will be axially or rotationaUy symmetric. If the crack 

surfaces are subjected to equal and opposite normal tractions p(r), then the boundary condi- 
tions at z = 0 can be written in the following form: 

Olzz(r, 0)=p(r) ,  a < r < oo, (7) 

Uiz(r,O)=O, b < r < a, (8) 

o~z(r, 0) = 0, b < r < oo, (9) 

O2rz(r,O)= O, 0 < r < b ,  (10) 

uz2(r, 0 )=0 ,  0 < r < b .  (11) 

Due to the continuity condition at the curved surface r = b, [ z 1/> 0, we find that 

Uz 1 (b, z) 2 = u z (b, z ) ,  

ur l (b, z) = u2r(b, z ) ,  

Olrr(b, 2) 2 = Orr(b , z ) ,  

O~z (b,z)=O2rz(b,z). (12) 

4. Reduction of  the problem to a Fredholm integral equation of the second kind 

We find with the help of the equations (4) and (6) that the boundary conditions (9), (10) and 

(11) are identically satisfied and the boundary conditions (7) and (8) lead to the dual integral 

equations 

/ o  F(s) Jo(rs)ds +/o s{ [A (s) + 2riB(s)] Ko(rs) -rsB(s)Ks (rs)}ds 

-p(r) 

1 
f o  F(s)Jo(rs)ds = O, 

$ 

Let us assume 

F(s) = S/a h (t) cos (st) dt , 

Journal of Engineering Math., Vol. 13 (1979) 235-247 

a ~< r < oo, (13) 

b ~< r < a .  (14) 

(15) 



An axisymmetric external crack problem 239 

such that h(oo) = 0. Using (15) we find that equation (14) is satisfied identically whatever be 

the form ofh(t) .  We can rewrite equation (13) in the form: 

a F(s)Jt(rs)ds 0-7 rfo s +rfo s{[A(s)+ 2v'B(s)]K°(rs)-rsK'(rs)B(s)}ds 

= -p(r)r , a < r < oo. (16) 
2#1 

Now substituting the value of F(s) from equation (15) into (16) we obtain 

- ~rf~r th(t)dt 
(t2-r2)k 

+ r / :  S {[A (s) + 2v I a (s)]Ko (rs) - rsB (s)K1 (rs)} ds 

-rp(r) 
2#a 

a <<. r < oo. (17) 

The equation (17) is of Abel type, its solution may be written as 

t rKo(rs)d r 
h(t)+ 2 f :  [A(s)+2plB(s)] f7  (r2_t2)-~ 

=- £ / 7  rp(r)dr 
(r 2 _t 2 )~ ' 

r2Kl(rs)dr ! 
-sB(s) f t (r~_t2)-------~ ~ ds 

a <<. t < oo. (18) 

With the aid of the formulae 

~tt rK°(rs)dr Ir e_St 
(r 2 _ t  2 )~ 2s ' 

r2K°(rs)dr ~ (1 + st)e-St ,  
f 7  (r2 t2)k 2s 2 

we can rewrite the equation (18) in the form: 

h ( t ) + f :  [A ( s ) - (1 -2v l  +st)B(s)]e-Stds- l r l l f7  
rp(r) dr 

(r 2_t 2)~ ' 

a <~ t < oo. 

From the equations of continuity (12) we find that 

f :  {[bsI1 (bs)D(s) - I  o (bs)C(s)] - [bsKl (bs)B(s)-Ko (bs)A (s)]} sin (sz)ds 

f£ = 1 (2 -2v l  +sz)F(s)Jo(bs)e-SZds, 0 < z < oo 
$ 

(19) 

(20) 

(21) 
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f :  { [C(s)I1 (bs) + (4(1 - v  2)11 (bs)-bslo(bs))D(s) + Kt (bs)A (s) 

- (4(1 -va )Kt (bs) + bsKo(bs))B(s)]} cos (sz)ds 

f :  (2v1-1 +sz)F(s)Jl(bs)e-SZds, 0 < z < (22) 
1 
$ 

/11::  {[gl(bs) + bsKo(bs)lA(s) - [(4(1 --Pl ) -I- b2s2)Kl(bs) 

+ (3 - 2 v t  )bsKo(bs)]B(s)} cos,(sz)ds +/a2 {[Ix (bs)-bsIo(bs)]C(s) 

+ [(4 - 4 v ~  + b2s ~)11 (bs) - (3 - 2 v 2 ) b s I 0  (bs)]D(s)} cos (sz)ds 

=-/albf: f sz-1)J°(bs)+(1-2v'-sz)~F(s)e-s~ds'os _J 
0 < z < oo, (23) 

f :  [Ul s{K1 (bs)A (s)-(2 (1 -Vl  )K1 (bs) + bsKo (bs))B(s) } + It2 s{Ii (bs)C(s) 

+ 2(1 -v2 )11 (bs)-bslo(bs)D(s)}] sin (sz)ds 

=g/a I sF(s)Jl(bs)e-ZSds,  0 < z < oo. (24) 

With the help of the Fourier inversion theorem, we find from (21), (22), (23) and (24) that 

bsIl (bs)D (s)-Io (bs)C(s) - bsB(s)K I (bs) + Ko (bs)A (s) 

2 f :  F(u) = - ( 2 ( 1 - v l ) f l  +uf2)Jo(bu)du = X I ,  0 < s < oo, 
ff u 

I, (bs)C(s) + [4(1 - v  2 )11 (bs)-bsIo(bs)]D(s) + Ka (bs)A (s) 

2 
f~" 1 ( ( 2 v l - 1 ) f 3  +uf4)F(u)Jl (bu)du,  -[4(1-vl )Kl(bs)+bsKo(bs)]B(s)= -~ u 

= X 2 ,  O < s  < oo, 

/at '{[K1 (bs) + bsKo(bs)]A (s) - [(4(1 - v l  ) + b 2 s 2 )K1 (bs) + (3 -2vx )bsKo (bs)]B(s)} 

+/a2 { [I1 (bs)-  bslo (bs)] C(s) + [(4 - 4v2 + b 2 s 2 )11 (bs) - (3 - 2v2 ) bslo (bs)]D (s) } 

f n2 /a, b f£ -:3 + u f4 ) Jo (bu) + ((1 - 2vt )f3 - u  f4 ) ~ _ ~  F(u) du 

(25) 

(26) 

- -X3~2  , 0 < S < oo. (27) 
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where 

[lal {K 1 (bs)A ( s ) - (2  (1 - v l  )K1 (bs) + bsKa (bs))B(s)} + la 2 {11 (bs)C(s) 

+ (2(1 -v2 )Is (bs)-bsIo(bs))D(s)} = 2 ~_ - t~1 uF(u)f2J1 (bu)du 7r d o  
X4 la2 

- , 0 < s < o o ,  
s 

f l  = sin(sz) e -uzdz  = s2 +u  2 , 

2su 
f2 = z sin (sz)e-UZ dz - 

(s 2 + u~ )2 ' 

f3 = cos (sz)e -uz dz - u 
(s 2 + u 2)  ' 

f4 = f£ z cos(sz)e-UZdz = L(u, + s;)2 ] .  

(28) 

(29) 

In the rest of  the analysis we shall denote Io(bs) = Io, I1 (bs) = 11, Ko(bs) = Ko, K1 (bs) = K1. 
Now solving the equations (25), (26), (27), and (28) we obtain 

1 
A = - [X1 {(a1310 +aall ) (a la6-a3a4)+ a311 (a1210 +aTIx )} 

(a2a6 -aaas ) (a 1210 +aTIl ) 

+ X2 {a3Io(a12Io + a 7 I , )  + (agI, + a,4Io )(a,a6-a3a4 )} 

+ X3{(ala6-aaa4)(aloll  + alslo)-Ila6(a12Io + aTIl )} 

+ X4{(alf l l  + a16Io)(a,a6-a3a4) + a---L (I0a12 + aTI1 )(11 -bslo)}] ,  (30) 
s 

B = 
(a2a6 - a3as ) (a12Io + a711 ) 

[X1 {a211 (a1210 + a711 )-(a204 ---alas) (a 1310 + a811)} 

+ X2 ~a2Io (a1210 + a711 )-(a2a4 --al as ) (11 a9 + I0a14)} 

- X3{asll(a1210 +avI1)+(aloI1 +alslo)(a2a4-alas)}  

-X4{(a2a4-alas)(a11Ii  +a16Io ) -  a-L (Ia-bslo)(a12Io +a711)}], 
s 

(31) 

C= 
11a7 + I0a12 

[XI (asa 13 --a8 a 1 z) + X 2 (aTa14 --a 12 a9 ) + X3 (alsa7 --a 10 a12 ) 

+ X4 (aTa 16 -alia12 )] ,  (32) 

D= 
a12Io +aTIl 

[XI (a13Io +asll ) + X2 (I1 a9 + Ioal4 ) +Xa (aloll +als lo )  

+X4(all l l  + a16Io)], (33) 
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where 

a l  

a 3  

a 4  

and 
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a6 

(l 7 

11(a2sbKt + a3Ko) 
as = 1 +  

a2a6 -a3as 

It (a6Ko + bsasK1) 
alo = - 

a2a6 -aaas 

=b2s2(I]-I2o)+ 2(1-v2)I~,  a2 =bsG[KoI, +K, Io ] ,  

= - G [Ktlt (2-2~1 + b2s 2) +2 ( l-v1)bsIoKl + 2bs(1-vt )Kolt +KoIob2s 2 ], 

= bs(I~-I2o) + 4(1-v2)I i Io ,  as = a2/(bsG), 

= - [bs(IIKt +Kolo) +4(1-v l  )Kt lo ] ,  

sbKl (a2a4 --as at ) + Ko(aaa4 ---a6at ) 
= bsla + 

a2a6 -a3as 

lo(K1 bsa2 + Koa3) 
, a9 - 

a2a6 -asas 

a6Ko +asbsKl 11-bsIo 
a l t  - 

S a2a6 --a3as 

a12 = 2(1-v2 )11 - bslo + 

a t 3  - 

GK I (a3a4 -a l  a6 ) G(a2a4-alas) 

a 2 a 6 - a 3 a s  a2a6 - a 3 a s  

G [a3Kllt +a211 {2(1-vt )Kt  +bsKo}], 
a2a6 --a3as 

a 1 4  - [a3IoK1 + a2Io {2(1-Vl )KI + bsKo }], 

[aeKl + as {2(1-vl )KI + bsKo }], 

G 

a2a6 -a3as 

-(7/1 

{a~K1 + [2(1-vl  )KI + bsKo]as }] 

a l $  = 
a2a6 - a 3 a s  

1 F. G ( I I - b s l o )  

a 1 6  s a2a6 -a3as 

[2(1-vl)K1 +bsKo], 

(34) 

G = #1//~2. (35) 

Substituting the values of A (s) and B(s) from equations (30) and (31) we can write 

A (s) - (1-2vl  + st)B(s) = XIBI (s, t) + X2B2 (s, t) + XaBa (s, t) + X4B4 (s, t), 

where 

1 

Dl = -- (a2a6 -a3as) (al2Io + aTIl) ' 

(36) 

(37) 

BI(s, t) =Dl[(a13Io +asIa)(ala6 -a3a4)+a3Ia(al2Io +a711) 

+ (1--2vl +st){a2Ia(a12Io +aTIx)-(a2a4 -alas)(a13Io +asll )}], 
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An axisymmetric external crack problem 243 

B2(s, t) = DI [a3Io(ax2Io +a711 )+(a911 +a14Io)(ala6 -asa4) 

+ (1-2vl +st){a2Io(a1210 +a711)-(a2a4 -alas)(lla9 + I0a14)}], 

Ba(s, t) = D1 [(a1011 +alslo)(ala6 -a3a4 )-Ila6(a1210 +aTIl ) 

- (1-2Vl + st) (asIl (a1210 +a711 ) + (aloI1 +alslo) (a2a4 -alas))], 

B4(s, t) = Dl [(axtI1 +a16Io)(ala6 -asa4)+ a__6_6 0121o +aTI1)(Ii -bslo) 
$ 

+ (1-2vl +sO{ as (11 -bslo)(a12Io +a711) 
S 

- (a2a4-aaas)(allll  + a16Io)}]. 

From equation (25), we find that 

X1 = 2f£* F(u) [2(1-vl)f1 +uf2lJo(bu)du 
U 

Making use of (15) and (29) we can write 

X, - 4(1-u,)s_~ aa f** h(t)dt f o  So(ub)cos(ut)dUu 2 + s 2 

(39) 

(40) 

(41) 

¢ ~  

+ -STr f a  h(t)dt fo u2 Jo(ub)cos(ut)du( u2 + s2) 2 (42) 

Making use of the integrals (62)1 and (62)3 given in the Appendix, we find from (42) that 

Xx = [(3-2Vl )Io (bs) + bs11 (bs)] f a  h (u)e-SU du 

- slo(bS) ~aa uh (u)e-SU du . 

From (26) we find that 

X2 = 2 f o  1 [(2v1-1)/'3 +uf4]F(u)J,(bu)du. 
7i" U 

Making use of (15) and (29) we get 

X2 = 2 [(2v1-1) h(t)dt ucos(ut)Jl(bu)du 
U 2 + 8 2 

(43) 

j.So ;£o 112 _S2 
+ h (t)dt u ( u2 +s2) 2 Jl (bu)cos(ut)du]. (44) 

Using the integrals (62)4 and (62)6 we can write the equation (44) in the form 
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X2 = - { ~  IIo(bs) + I2 (bs)] + 2vd, (bs) } 

+ sl~ (bs) f :  uh (u)e -su du. 

From equations (27) and (45), we find that: 

f_ J, Xa = - 2 bG f ~. f3 +uf4)Jo(bu)+{(1-Zu,)f3-uf4} _F(u)du. 
ff  J u  bu J 

Making use of (15), (29) and the integrals (62)3, (62)4 and (62)6 we find that 

X3 = G f :  h (t)e-St [sb { ~ Io(sb ) + bsll (bs)-stlo(bs)} 

sb 
+ I1 (bs) (st-Zul) - -~  Ia (bs)] dt. 

From (28) we fred the value of X4 in the form 

_2 G f :  uF(u)f 2 (u)J, (bu)du X 4 = l r  

With the help of (15) and (29) we fred that 

4 I f :  { ; :  uJ,(ub)cos(ut)du - sG h(t)dt 
X 4 = f f  s 2 + u 2 

- f £** us2 J '(~- + u--~(ub)c°s(ut)du )5"  ~'~ 

Making use of integrals (62)4 and (62)s we fred that 

x ,  = - sa  I~(Os) + y {Io(bs) +I2(Os) 

f ;  h(u) e-su du + s2Gll (bS) f :  uh(u)e-SU du . 

With the help of (43), (45), (47), (50) and (36) we can write equation (20) in the form 

;: f7 h (t) + h (u)g (u, t)du = _ ~1 rp (r)dr 
71"/J1 (r2_t2)~ , a < t < ~o, 

where 
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: h (u)e-SU du 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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K(u, t) 

245 

= f o  e-S(U+t) [B1 (s,t ) ~((3-2Vl )Io(bs) + bs11 (bs)-sulo(bs) )} 

bs 
+ B2 (s, t) { -  - ~  (Io (bs) +12 (bs))-2vxI1 (bs) + sull (bs)} 

sb 
+ GB3 (s, t) { -~ (lo (bs) + 2bsI1 (bs)-2sulo (bs)) +I1 (bs) ( su -2v l ) -  s~ 12 (bs)} 

bs 2 
+ GB4 (s, t) ts (su - 2)1, (bs) - --~ (Io (bs) + 12 (bs)) } ] as. (52) 

The equation (51) is a Fredholm integral equation of the second kind with a kernel K(u, t) 
defined by equation (52). 

Ifp(r)  = -1 / r  2 , then equation (51) can be written in the form 

H(t) + H(u)K(u, t)du 1 
t ' 

where 

21a, h (u) = H(u). 

a < t < oo, (53) 

(54) 

5. Expression for the stress-intensity factor 

We find from equation (4) that 

o) 

2ta, 
- - f o  F(s)J°(rs)ds - f o  s {K°(rs)A(s) 

+ [2vlKo(rs)-rsKa (rs)]B(s)}ds, 0 < r < a ,  (55) 

which may be written in an alternative form: 

~(ah(a) f~, h'(t)dt 
Olzz(r,O) =2/~1 2-r2)- ~ + (t2 r2)k 

- sl[A(s) + 2VlB(s)lKo(rs) 

- rsK~ (rOB (s)Idsl 
A 

0 < r < a ,  (56) 

where the prime denotes differentiation with respect to t. The stress-intensity factor at the tip 

of the crack is given by the equation 

K = lim [ ~  Olzz (r, 0)]. (57) 
r--,a + 

If in equation (57) we use the expression (56) for O'zz(r, 0) with the values (30), (31) substi- 
tuted for A(s) and B(s) we find that only the first term in (56) makes contributions to the limit 

in (57) and that: 
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2 / a a h ( a )  H(a) 
K = - -  = - -  ( 5 8 )  (a)~ (a)~ 

For an infinite solid with an external circular crack subjected to rotationally symmetric  loading 

(b --- 0) the stress-intensity factor  is given by (see Kassir and Sih [2], p. 41):  

2 fa  rp(r)dr 
K** = (59) 

na ~ " (r 2 -a  2) 

For p(r) = -1 /r  2 , we find that  

Now from (58) and (60), we have 

1 
K** = (60) 

a3/2 

1.15 

I.I0 

K 
- oH(a) .  (61) 

K** 

1.06 

G-50.O, 5.0, L2, 1.0,0.e, 0.6,0.4,0.2 

L O 0 ~  

O.(J~ 

o.9O 

0.85 

O.B~ 
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0",.2 ,'.~ ,'., ,'.~ ,'.5 ,'., ,~, '~, ~o 

Figure 1. Values of K/K** against a for various values of G and u~ = v 2 = 0.25, b = 1. 
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6. N u r n e h e a l ~ s ~ t s  

1 We have solved the integral equation (53) numerically for H(t) for v I = v2 = a, b = 1 and a = 1.2 

(0.1) 2.0 for various values of  G. These numerical values of  H(a) are used to obtain the 

numerical values of K/K=.. In Figure 1 the numerical values of K/Ko. are displayed graphically 
against a for various values of G. 

Appendix 

We shall list here some of the integrals, which have been used in the body of the paper (see 

Erdelyi [5], Vol. 1) for t > b: 

f o  JO(ub)cos(ut)du 7r 
u 2 +s 2 - 2s I°(bs)e-St '  

Jo(ub) cos (ut)du 1re-St 

f o  (s 2 +u2)  = 4s a 
[Io(bs) + stlo(bs)-bsll  (bs)], 

~ U2Jo(ub)cos(ut)du 7r 

(s 2 + u2) 2 4s 
e -~t [Io(bs) + bsI~ (bs)-s t lo(sb)l ,  

~o  ucos(ut)Jl(bu)du rr 
u 2 + s 2 - - ~ e-StI1 (bs), 

"0 ucos(ut)Jl(bU)du 1re -st  

f~ (u 2 + s ~)2 8s 
- -  [2U1 (bs)-b {Io(bs) + 12 (bs)} ] ,  

[ U2 -- S2 ~t 11 
u ~(7  ~s7) 2 J J~ (bu)cos (ut)du = -~ e-St [211 (bs) ( s t -  1) - sb {lo (bs) + 12 (bs)}]. 

(62) 
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